
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 10, 327-351 (1990) 

A TAYLOR-GALERKIN-BASED ALGORITHM FOR 
VISCOUS INCOMPRESSIBLE FLOW 

D. M. HAWKEN, H. R. TAMADDON-JAHROMI, P. TOWNSEND AND M. F. WEBSTER 
Department of Mathematics and Computer Science, U nioersity College, Swansea SA2 8PP, U.K. 

SUMMARY 
In this paper the development and behaviour of a new finite element algorithm for viscous incompressible 
flow is presented. The stability and background theory are discussed and the numerical performance is 
considered for some benchmark problems. The Taylor-Galerkin approach naturally leads to a time- 
stepping algorithm which is shown to perform well for a wide range of Reynolds numbers (1  I Re I 400).* 
Various modifications to the algorithm are investigated, particularly with respect to their effects on stability 
and accuracy. 
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INTRODUCTION 

This paper constitutes an interim progress report on the development of the schema presented in 
Townsend and Webster.’ There, a primitive variable, finite element algorithm was suggested for 
transient incompressible viscous flow, adopting a Taylor-Galerkin approach in combination 
with a fractional step (operator-splitting) method. Such a method was advocated to address the 
shortcomings of traditional Galerkin methods in the flows of interest and to yield highly accurate 
methods in the transient context. Attention is given here to establishing the viability of this 
method for steady two-dimensional Newtonian model problems. The ultimate objective is to 
simulate transient three-dimensional non-Newtonian flows, but to first gain insight into the 
behaviour of the algorithm, attention is restricted to this simpler class of problems. Work is 
however already progressing in more complex regimes. Some successful transient three- 
dimensional Navier-Stokes computations are now beginning to appear in the literature and 
indicate the realistic possibilities that are becoming attainable today; see e.g. References 2 and 3. 

Literature of relevance here falls into two categories, namely those references that provide 
solutions to selected model problems and those that have a bearing on the underlying algorithm 
as of Reference 1. Specific benchmark problems addressed in this paper are variants of the driven 
cavity problem, namely two cases with different ‘top-plate’ velocity profiles. Case (a) is for a 
variable profile where the solution is continuous and is well documented in Peyret and Tay10r.~ 
Case (b) is for the conventional constant profile, widely reported in the literature, which possesses 
corner singularities in the solution. Instances of this problem are taken for both low Reynolds 
number (Re = 1) and high Reynolds number (Re = 400) under varying conditions. The low-Re 
range is of interest for highly viscous (diffusion-dominated) flows, whilst high Re values will 

* A conventional definition for Re is assumed. 
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provide valuable information on performance for advection-dominated flows. The latter is of 
particular importance for the viscoelastic context, where the aim is to design schemes which can 
accommodate highly elastic behaviour and its associated highly convective constitutive compon- 
ent. The methods described will be ideally suited to this task since their origins lie in compressible 
fluid dynamics, where the equations are of hyperbolic type. 

The structure of this paper follows the development of the algorithm through its various stages 
of successful implementation. First, attention is drawn to a time-stepping scheme which is implicit 
only in the sense of the presence of the consistent mass matrix that arises naturally in the finite 
element context. This version, which for clarity is referred to as the explicit scheme, enjoyed 
success at high Re but revealed its severe limitations for low Re. This knowledge led to the 
development of an alternative scheme, where the diffusion is treated implicitly and the advection 
explicitly, and allowed the computation of solutions over a wide range of Re. This scheme is 
referred to as the implicit scheme. Consideration is also given to the stability effects caused by the 
removal of the third fractional step which is associated with incompressibility and its accurate 
representation. Clearly, once the numerical solution has evolved to an acceptably incompressible 
steady state, so that this step has a negligible numerical contribution, it is more efficient to discard 
it altogether. However, the pressure is found to be particularly sensitive to such changes and such 
practices are shown to invariably destabilize the scheme. Further investigations are pursued into 
the effects on stability of modifications to step 3, and thus it is shown how stability of the scheme 
may be enhanced without degrading accuracy (see van Kan5 for details). 

In Reference 1 the explicit time-stepping Taylor-Galerkin algorithm for advection4iffusion 
was outlined using the same approach as that used to generate Lax-Wendroff difference 
schemes.6" In fact this scheme closely resembles the two-step Lax-Wendroff scheme proposed by 
Richtmeyer, which is discussed in Richtmeyer and Morton.' A whole family of such schemes is 
extensively discussed in Reference 4. The merit of explicit schemes generally is that they are 
efficient and simple to implement, which makes them particularly attractive for the large-scale 
transient three-dimensional problems that one wishes to attack. Their disadvantage is that they 
are unstable for large time steps (At) .  Of course there are circumstances, such as in advection- 
dominated or compressible flows, where At may be more constrained by accuracy considerations 
than by stability. In the present non-linear multidimensional advection4iffusion context there is 
an absence of a complete theoretical study of stability. Therefore in two dimensions we observe 
the following practical approximate stability guidelines in our choice of At.4 At low Re, At is 
limited by 

At I h2/(4Re-'  + (lul + lul)h),  

At 2 W u l  + Iul), 

(1) 

(2) 

whilst for high Re 

where (u, u) is the velocity vector and h is a representative value for the mesh spacing. 
The literature does contain reference to semi-implicit schemes that adopt an implicit treatment 

for the diffusion terms.g Examples may be found in References 1@-12. In this approach only the 
Courant condition (2) is anticipated to apply, provided that no further constraint arises from 
the treatment of diffusion." This is true for, say, a Crank-Nicolson choice. Gresho et al.IZ 
demonstrate however that unconditional stability may be attained through this approach for 
both advection-diffusion and Stokes equations. In their work a balancing tensor diffusivity is 
employed which is central to their 'upwinding' technique and plays a crucial role in establishing 
unconditional stability. The two-step Taylor-Galerkin method has similar upwinding goals, and 
although the implementations differ, one may expect similar behaviour for this method. This is 
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borne out by considering the combined predictor-corrector doublet to provide the complete step 
equations in discrete form.' The close similarity between the proposed Taylor-Galerkin scheme 
and the iterative predictorsorrector streamline-upwind Petrov-Galerkin scheme of Brooks and 
Hughes" is also most striking. A crucial factor in favour of the present scheme is that no ad hoc 
problem-dependent parameters are required to achieve this consistent and directionally oriented 
method. 

To extend the schemes of this paper to the Navier-Stokes context a fractional step approach is 
followed, often referred to as the 'pressure correction or projection' method.' 3-1 This was 
extended to build a second-order time-accurate method. The necessary theoretical background 
lies in the analysis of van Kan' in the finite difference context and of Cuvelier et al." for finite 
elements. This provides a high level of confidence in the overall scheme, confirming consistency 
and global accuracy, and linearized stability via an energy method. The latter applies in the 
Stokesian context for an explicit treatment of advection, and hence for insight beyond this regime 
one must rely on the advection-diffusion analyses quoted above. For Navier-Stokes equations 
both Quartapelle' and Gresho et a l l2  have found experimentally that under varying imple- 
mentations, the stability limitations actually far exceed the Courant condition. Results of the 
present work indicate that no At limit is encountered at low Re, thus providing strong evidence of 
the acceptability of the implicit approach. This does not appear to be the case for high Re, 
however, where agreement with the findings in References 11 and 12 is observed. 

Below, it is shown how the Galerkin mass matrix equations are solved by employing indirect 
simple iterative methods. An investigation is conducted into the effect of 'mass lumping' as an 
alternative to using the consistent mass matrix. This technique abounds in the literatre and is 
used in the majority of the references cited, yet not without provoking some controversy." The 
justification for adopting such a technique is mainly on the grounds of economy, though superior 
stability may result under certain c i r c u m s t a n ~ e s , ' ~ * ~ ~  albeit at the expense of loss in 
accuracy.21*22 One is always aware therefore of the deleterious effect such a technique may have 
on time accuracy, though in the present study one is more concerned with steady state solutions 
and less with the developing solution history. 

Mass lumping is a pragmatic approach of great significance not only in run-time efficiency but 
also in economy of evaluation effort. For example, one may observe this in the evaluation of the 
matrix in the discrete Poisson equation for pressure.13 This latter issue is avoided here by virtue 
of the order of temporal and spatial discretization involved. Note also that taking a finite 
difference discretization is in some sense equivalent to mass lumping. Past experience has shown 
that mass lumping always provides superior stability qualities with no significant accuracy 
discrepancies in the steady state solution. However, since the major cost per time step is centred 
around the evaluation of right-hand-side vectors and not the iterative solution phases, one 
concludes to date that the increased overall number of time steps required when using mass 
lumping is in certain circumstances actually less cost-effective than would otherwise be the case. 
Comments on this issue are made in the sections containing the numerical results. 

EXPLICIT TIME-STEPPING SCHEME 

Algorithmic development 

equations in the absence of body forces, are given by 
Adopting the notation and conventions of Reference 1, the incompressible Navier-Stokes 

put = pv2u - pu-vu  - vp, (3) 

v * u  = 0, (4) 
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where V2 is the Laplacian and V the gradient operator, p is the density, p is the viscosity, u is the 
velocity vector and p is the pressure. Boldface type is used to represent vectorial quantities, the 
subscript is used to denote differentiation with respect to time, and appropriate boundary and 
initial conditions are assumed. 

A semidiscrete Galerkin spatial formulation is adopted, leading to approximations U ( x ,  t )  and 
P ( x ,  t )  to the velocity and pressure fields respectively, where 

V(x, t )  = U j ( M j ( 4 ,  P(x, t )  = Pj ( t )$ j (x ) .  (5 )  

Then U and P represent the time-dependent vectors of nodal values of velocity and pressure with 
components U j  and P j ,  and 4j and $ J ~  are the respective basis functions spanning the appropriate 
trial spaces. Here q5j are selected as piecewise quadratics and $ j  as piecewise h e a r s  on triangles. 

In Reference 1 the two-step Taylor-Galerkin method was introduced to solve 1D first-order 
evolutionary hyperbolic equations. This provides the simple and effective mechanism by which 
the system Jacobian can be evaluated via a predictor-corrector doublet over a single time step. 
Extensions to higher spatial dimensions, and to instances where second-order differential 
(diffusive) terms arise, can then be handled in a straightforward manner. This naturally leads to 
solving systems of equations governed by the Galerkin mass matrix which is discussed in the next 
section. 

Consideration was then given to the Navier-Stokes equations involving the additional 
complications of incompressibility and the introduction of the pressure term in the momentum 
equations. The projection method was considered appropriate here. This was developed to 
second-order time accuracy and introduced some new features. These include solving for the 
pressure difference over a time step as a primary variable in a Poisson equation; requiring the 
provision of a consistent initial condition for pressure; and the introduction of an intermediate 
free variable U* to be associated with a non-divergence-free velocity vector. The numerical 
treatment of the associated boundary and initial conditions could then be achieved simply and 
accurately. 

With only minor modifications from Reference 1, the explicit Taylor-Galerkin scheme in fully 
discrete matrix form now reads 

(64  
P 
At 

step l a  2-M(U"+''2 - U") = {F - [ p S  + pN(U)]U}" + LTP", 

step l b  EM(U* At - U") = {F - [ p S  + pN(U)]U}"+"2 + LTP", (6b) 

P 
At 

step2 SKQ"" = - -LU* 

P step 3 -M(U"+' - U*) = 6LTQn+l, 
At ( 6 4  

where n denotes the time step index, Q " + l  = P"+l - P", M is the consistent mass matrix, S is the 
'diffusion' matrix, N is the 'advection' matrix, K is the pressure stiffness matrix, F is the forcing 
function vector due to boundary conditions and L is the matrix that arises from incompressibility. 
For second-order accuracy in time the Crank-Nicolson choice of 0 = 0.5 is adopted. The 
inclusion of the half-step within the first fractional step characterizes the extension of first-order 
projection methods to second-order Taylor-Galerkin/projection methods. For reasons of resolu- 
tion, it is appropriate to take an integration by parts on the right-hand side at step 3 and hence 
recast the differential operator onto the quadratic test functions for velocity. With the afore- 



A TAYLOR-GALERKIN ALGORITHM 33 1 

mentioned treatment of boundary conditions as in Reference 1, no further modifications to the 
scheme are necessary. 

At step 2 the Poisson equation for the pressure difference arises where the constant stiffness 
matrix K has a symmetrical banded structure. This is solved per time step by a direct Choleski 
method, requiring a single reduction phase at the outset and a back-substitution phase at each 
time step. This is fortuitous since the arithmetic operation count is mp x b x (b  + 1)/2 for the 
former and outweighs mp x 2b for the latter, where mp is the number of nodal pressure unknowns 
and b is the half-bandwidth of K.23 Overall, this leads to an algorithm with O(m,)  memory space 
and O(m,) run-time worst-case complexities in the maximum number of nodal unknowns per 
variable, m, (see Aho et al. for definitionsz4). Of course, for run-time complexity the constant of 
proportionality will depend on, amongst other things, the number of time steps involved. The 
run-time complexity per time step is in fact linearly dependent on both the number of nodal 
unknowns and the number of elements, me, in the mesh. The constants of proportionality dictate 
which factor will dominate in practical implementations. Here all matrix-vector multiplications 
are performed in an element-wise manner and nodal calculations occur in solution phases 
throughout steps 1-3. Currently, the predominance of computation is within right-hand-side 
vector calculations, particularly so at step 1. Hence, since m, is O(m,), the run-time complexity is 
more appropriately expressed as O(m,) .  

Through the use of simplex elements, considerable economic benefits may be derived in terms 
of cost and efficiency by replacing quadrature with exact integration wherever this is possible. 
Furthermore, there are no apparent numerical differences in the associated solutions that are 
derived from either approach. Since most modern codes avoid element level storage of informa- 
tion and simply recompute such values, this is a significant factor to consider. Past experience 
indicates that run-time cost may be practically halved by adopting such analytic integration 
techniques. 

Treatment of the Galerkin mass matrix equations 

difference vector X over a time step of the form 
At steps 1 and 3 of the algorithm one must solve a system of equations for an unknown 

MX = b, (7) 

where M is the mass matrix and information carried in the vector b is known at each solution 
stage. Hence one requires the inversion of the mass matrix. Direct inversion is avoided for reasons 
of economy in computer storage and cost efficiency. To take advantage of modern computer 
hardware developments it is important to extract parallelism from the algorithm. One way to 
accomplish this is to use iterative methods of solution and to uncouple the individual velocity 
components so that each may be treated independently. A single component then constitutes a 
typical vector X of nodal point values over the domain. 

Again for reasons of economy, the consistent mass matrix is never actually assembled. Instead 
only the element contributions are used in a simple, Jacobi iteration. Thus there is no storage 
overhead for the consistent mass matrix. The mass matrix is symmetric positive-definite with a 
banded structure, and iterative methods are known to be appropriate for the solution of such 
Galerkin mass matrix equations when diagonally preconditioned. For example, the conjugate 
gradient method gives extremely rapid convergence at a rate that is independent of the mesh size 
(number ofnodal unknowns) and, for simplex elements, even the element shapes.25 For the Jacobi 
iteration, rapid convergence in a handful of iterations is the expected norm for steady problems.26 
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The basic iteration is defined in terms of the splitting of M about a chosen diagonal form Md as 
follows: 

MdX(r+l) = (M, - wM)X"' + wb, (8) 

where r is the iteration number and w is a positive relaxation factor. For the conventional Jacobi 
method o = 1, otherwise the iteration is the extrapolated Jacobi m e t h ~ d . ~ '  This provides an 
iteration matrix of the form I - o M i ' M  and a method that is symmetrizable and hence 
amenable to various iterative acceleration techniques in the terminology of Hageman and 
Young.28 Justification for iteration (8) may be found in the approximate factorization analysis for 
M-'  presented by Donea et aLZ9 There it is shown how three passes of such an iteration are 
equivalent to a three-term truncated approximation series to M - The assumption that 
11 M i  M M i  - I )I , < 1 is equivalent to the requirement that the spectral radius of the 
iteration matrix be less than unity, which is also necessary for iterative convergence. 

Of necessity one must store the vectorial form of M, and a vanishing initial guess is always 
assumed. This provides a very good initial guess if the problem is slowly changing in time or if the 
time step is sufficiently Clearly one such iteration is equivalent to replacing the consistent 
mass matrix with the diagonal matrix Md and hence also to mass lumping if M, is chosen 
suitably. Various choices of M, have been tried. The trivial diagonal choice Mdl , though yielding 
linear convergence rates, did not perform well in the sense that it was found to induce instabilities 
through the time steps in certain flow situations (typically where free boundary conditions were 
involved). Therefore this choice was abandoned in favour of the more commonly used row sum* 
form Md2. This choice was found to be particularly appropriate, giving rapid convergence rates, 
with acceptable convergence being achieved in at  most three to five such iterations. 

The analysis of Wathen provides upper and lower bounds for the eigenvalues of M,'M. For 
example, with quadratic basis functions an upper bound is given by A,,, I2.0598 and a lower 
bound is Amin 2 0.3924. The required condition for the Jacobi method to converge is A,,,, < 2, 
whilst for the extrapolated Jacobi method the condition is wA,,,, < 2. Upper and lower bounds 
for the eigenvalues of M,'M follow similarly and are found to be 0.971 88 and 0.18595 
respectively, being about half the values of those for the Mi: M case as anticipated. Hence it is 
not surprising that the row sum version works so well and clearly results in a convergent Jacobi 
method with o = 1. Alternatively, with M,,, o must be less than 0.97098 to guarantee 
convergence. 

In certain instances the optimal condition number and hence the convergence rate may be 
predicted from attainable upper and lower eigenvalue bounds and through a suitable choice of w. 
To illustrate this for the M,, option, mop, is 0.9 precisely for linear elements, whilst for quadratic 
elements mop, is approximately 08156 (if one presumes that the upper and lower eigenvalue 
bounds of Wathen are closely attained). Optimal values for the M,, case are found similarly, and 
for quadratic elements wept is approximately 1.7274, a value which is reflected in numerical 
experiments. However, empirical evidence to date indicates that the attainment of optimal 
iteration parameters is not a critical issue in the present calculations, where one is mainly 
interested in using the iterative procedure at each time step merely as a vehicle to reach steady 
state. In fact the main results of this article were produced with w = 1. The convergence rate in the 
early iterations on each occasion the iteration is invoked is what matters here. Recent evidence 
would indicate that iteration (8) is superior in this respect over a conjugate-gradient-accelerated 
iteration when the latter is implemented with either the M,, or M,, choice. 

* In modulus for quadratic elements with negative element matrix coefficients 
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Numerical results for the explicit scheme 

A thorough study of the cavity flow problem under profile case (a) is now described. Solutions 
for the constant profile case (b) problem are included at the appropriate station as they arise. This 
section concentrates on the results for the explicit scheme where the histories of the relative error 
norms are displayed for velocity and pressure in both L2- and L,-measures and are defined as 

(9) 

in the underlying respective norm. The notation adopted is +, x for velocity and 0, for 
pressure in the L2- and &,-norms respectively. This choice is made because these measures 
provide sensitive indicators of overall algorithmic performance. Where relevant, development 
histories of velocity magnitudes at selected domain points as a function of time steps are 
presented as insets on relative error norm plots. The two meshes employed for the different levels 
of refinement are illustrated in Figure 1. These meshes possess the superconvergence property 
(except the isolated central region3') and have corner regions which are not locked by the 
boundary conditions. Some investigation with exponentially graded meshes and also meshes with 
'locking' corners was conducted and the proposed meshes of Figure 1 proved a superior option. 

E = IIX"" - X"ll/llX"ll 

High-Re range. The results for Re = 400 are displayed in Figures 2 4 .  Here attention is 
directed to the effect of switching off the third step of the algorithm when a suitably incom- 
pressible velocity field has been reached (see Figure 2). Clearly this induces instabilities in the 
relative error norms for pressure of a periodic, oscillatory and decaying form. The level of 
pressure is so large that it is off the scale in Figure 2(b). The necessity to retain this third step is 
therefore established, if only for its numerical role. The acceptable level of the time step is of note 
and the large number of time steps necessary is typical of high-Re simulations. In this case, whilst 
the number of mass iterations remained fixed, taking a smaller time step had little effect, as seen in 
Figures 3(a) and 3(b). 

The effects of altering the number of mass iterations can be observed in Figures 3(c) and 3(d). 
The case with only one mass iteration is completely smooth in the monitored relative error norms 
throughout the evolution process, but the solution history development has underachieved that 
which the five- or three-iteration alternatives provide. After 250 time steps the level of reduction is 
about 30%. The same ultimate steady state is reached for all variants, but the relative time cost is 
in favour of the three-iteration version. Increasing the number of mass iterations from three to five 
at fixed At seems to have little effect after the start-up phase, where larger fluctuations in both 
amplitude and frequency are always observed at the higher iteration numbers. Here three 
iterations appears to be quite acceptable, providing a sensible balance between cost and precision. 

The steady state solutions in velocity vector plot, streamfunction, pressure and velocity 
components across the centrelines of the cavity are presented in Figures 4(a) and 4(b) for problem 
cases (a) and (b) respectively. Tables I(a) and I(b) contain the associated details of vortex centre 
position and strength, (u,,,, u,,,) on centreline, comparisons against the literature and also across 
the variety of numerical schemes discussed in this paper. To suit convention, u,,, is reported with 
positive sign. The results are for two characteristic mesh element sizes of h = 0 1  and 0-05 (taken 
over element widths) and indicate the high level of spatial accuracy of the present schemes, 
confirming convergence to the accepted steady state solution. Note also that the streamfunction is 
interpolated by linear trial functions for convenience, being recovered from the highly accurate 
velocity solution. Hence a slight degradation in accuracy must be anticipated in the streamfunc- 
tion. Concerning the literature, the basis for comparison is one of numerical results only for the 
present model problems. 
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Figure l(a). Cavity mesh (h = 0.1) 

Figure l(b). Cavity mesh (h = 0.05): + (0.15, 0.35), x (0.15, 0.4), 0 (0.15, 0.45), (0.7, 0.25), E4 (0.7, 0 3 )  

Low-Re range. The corresponding results for Re = 1 are presented in Figure 5. Switching off 
step 3 has the same influence here as for high Re, as seen in Figures 5(a) and 5(b). The larger range 
in scale in Figure 5(a) is used to reflect the requirements to reach the steady state. Note again that 
the pressure plot has disappeared off the scale in Figure 5(b). The value of the time step, 
At = 0.OOO 03, is seen to be particularly small which therefore incurs a large number of steps. This 
is generally an unacceptable penalty to pay compared with conventional diffusion-based schemes 
at this low Re level. 

The effects of altering the number of mass iterations can be seen in Figures 5(a) and 5(c). The 
decrease in the number of mass iterations from five to one has the same response as before. For 
the one-iteration case the relative error norms are smooth throughout their development, though 
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Figure 2(a). Effect of stage 3: present (Re = 400, At = 0.02, 3 iterations, explicit scheme) 
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Figure 2(b). Effect of stage 3: removed (Re = 400, Ar = 0.02, 3 iterations, explicit scheme) 
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Figure 3(a). Effect of time step: Re = 400, At = 0.01, 3 iterations, explicit scheme 
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Figure 3(b). Effect of time step: Re = 400, At = 002, 3 iterations, explicit scheme 
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Figure 3(c). Effect of mass iteration number: Re = 400, At = 0.01, 5 iterations, explicit scheme 
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Figure 3(d). Effect of mass iteration number: Re = 400, At = 0.01, 1 iteration, explicit scheme 
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again after 250 time steps the solution has underachieved that which the five- or three-iteration 
alternatives provide by about 10%. The solution history developments for the higher iteration 
numbers are insensitive to switching off the third fractional stage and may be observed in 
Figure 5(b). Again it is preferable to elect for a larger number of iterations; in this case the three- 
iteration option appears optimal and hence the appropriate choice for the explicit scheme under 
all circumstances reported. 
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Figure qa). Steady state solution case (a): Re = 400, At = 0.02, 3 iterations, explicit scheme. (i) Velocity field; (ii) 
streamfunction contours; (iii) pressure contours; (iv) velocity profiles ( ~ ( 0 . 5 ,  y) and u(x ,  0.5)) 
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(iii) 
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Figure qb). Steady state solution case (b): Re = 400, At = 0.02, 3 iterations, explicit scheme. (i) Velocity field (ii) 
streamfunction contours; (iii) pressure contours; (iv) velocity profiles ( ~ ( 0 . 5 ,  y) and u(x, 0.5)) 

Table Ia. Comparison of steady state solution against the literature: case (a), Re = 400 

Scheme h +,,, Vortex centre LimaX(0-5, y) Vmmnr(x, 0.5) Vmin(x, 0.5) 

Explicit 0.05 0.0858 (0.45, 0.60) 0.233 0.336 -0.214 
Explicit 0.10 0.0877 (0.45, 0.60) 0.242 0.345 -0.215 

Implicit 0.10 0.0877 (0.45, 0.60) 0.242 0-340 -0.214 
Implicit 0.05 0.0855 (045, 0.60) 0.233 0.329 -0.211 

Reference 31 0.06 0.0577 (0.38, 0.62) - - - 
- - Reference 4 0.05 0.0750 (0.40, 0.65) 0.188 

Reference 32 0.05 0.0844 (0.40, 0.65) 0229 - - 
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Table Ib. Comparison of steady state solution against the literature: case (b), Re = 400 

Scheme 

Explicit 
Implicit 
Reference 33 
Reference 33 
Reference 34 
Reference 35 
Reference 36 
Reference 37 
Reference 38 

~~ ~ 

h 

0050 
0.050 
0.050 
0.025 
0.050 
0.020 

0.031 x 0062 
000714 
0015 

*"C 

01012 
0.1014 
00675 
0.1017 
01064 
01014 
011363 
011297 
0112 

Vortex centre 1/,,,(0.5, y) 

(0.45, 0.60) 
(0-45, 060) 
(0-35, 073) 
(0.44, 061) 

(0-45, 0.60) 
(0.55463, 060415) 
(055714, 060714) 

(0.44, 0.62) 

- 

0.285 
0285 

0.25 

0.210 

- 

- 

- 
- 
0300 

0390 -0250 
0.390 - 0.250 
- - 
- - 
- - 
- - 
- - 
- - 
0.450 - 0293 

IMPLICIT TIME-STEPPING SCHEME 

Algorithmic development 

By adopting a Crank-Nicolson representation for the diffusion terms, but otherwise retaining 
the predominantely explicit approach as before, the following fully discretized Galerkin equations 
may be derived: 

step l b  ($M + ;S)(U* - U") = $(F"+' + F") + (-@U + LTP}" - [pN(U)U]"+1'2, 

ote that for time-independent boundary conditions, F" = F"+ 'I2 = F"+ '. The arrow &low 
step 3 is used to highlight a particular term which comes from a consistent derivation. Its 
omission is found not to hinder consistency and furthermore enhances stability of the overall 
scheme. This amounts to discarding a term of the form AtpS(U"+' - U*)/2.22 Major difficulties 
arise however when this term is retained then higher-order differentials result in the derivation at 
step 2 which are difficult to resolve with the present finite element technique and a choice of Co 
trial functions. Therefore such contributions at step 2 are presently ignored. 

The new form of the iteration matrix that results from this scheme does not alter the attractive 
convergence behaviour achieved with the mass matrix alone. This is largely due to the dominance 
of the mass matrix contribution by virtue of the At scaling, a fact that is borne out in practice. It is 
of note that S is a symmetric positive-semidefinite matrix and again possesses a strongly banded 
structure. For large Re values the diffusive contributions to the new scheme become negligible 
and hence the explicit and implicit forms become synonymous. The iteration matrix is then 
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Figure S(a). Effect of stage 3: present (Re  = 1, At = 0.00003, 5 iterations, explicit scheme) 
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Figure S(b). Effect of stage 3: removed (Re = 1, Af = 000003, 5 iterations, explicit scheme) 
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Figure 5(c). Effect of mass iteration number: Re = 1,  Ar = 040003, 1 iteration, explicit scheme 

dominated by the presence of the mass matrix. For low Re, stability constraints are evidently of 
no consequence since an upper limit on At is not encountered. Conversely, for large Re, an order- 
of-magnitude increase beyond the Courant condition limit is found to apply. Clearly accuracy in 
pseudo-time is more important here in the sense of the bearing it has on the development rate to 
the steady state. In all instances considered, a high level of confidence may be expressed in the 
schemes suggested so far if equivalent steady state solutions are computed from both explicit and 
implicit variants. 

Numerical results for the implicit scheme 

This subsection concentrates on the results for the cavity flow case (a) problem under the 
implicit scheme. This is described through the developing time histories of the variables at 
selected domain points and the relative error norm plots throughout the evolutionary process to 
the steady state. 

Low-Re range. The results for Re = 1 are presented in Figure 6 8 .  The value of At is now 
comparable with that of the Re = 400 case. This is an acceptable value and is competitive with 
conventional schemes. The complete removal of step 3 has a marked oscillatory effect on the 
solution which is again particularly significant in the pressure. 

The omission of the extra term at step 3 also has a marked effect on stability which is here 
reflected in both velocity and pressure relative error norms. The vastly improved development in 
solution history is particularly significant as can be observed from Figures qa)  and qb). This 
improvement over the alternative version with the inclusion of this extra term is observed in all 
variables and throughout the evolutionary period. 
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Figure qa). Effect of ‘extra term’ present at stage 3: implicit (+) (Re = 1, At = 0.01, 5 iterations) 
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Figure qb). Effect of ‘extra term’ absent at stage 3 implicit (-) (Re = 1, At = 0.01, 5 iterations) 
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From Figures 6(b) and 8(b) one can discern the effects of halving the time step at a fixed number 
of mass iterations, which significantly reduces the magnitude of the relative error norms in both 
velocity and pressure (though note the curious effect of increased fluctuations in the start-up 
phase). This same effect is observed on increasing the number of mass iterations from three to five 
at a fixed time step. The best choice here appears to be At = 0.01 and five mass iterations, and 
these settings correspond to the best solution computed in this case to date. The steady state 
solution is presented in Figures 7(a) and 7(b) for all variables as before for problem cases (a) and 
(b) respectively. These low-Re results are graphically indistinguishable from those derived for the 
explicit scheme. The corresponding tabulations of vortex centre strength and position, and 
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Figure 7(a). Steady state solution case (a): Re = 1, At = 001, 5 iterations, implicit (-) scheme. (i) Velocity field; (ii) 
streamfunction contours; (iii) pressure contours; (iv) velocity profiles (~(0.5,  y )  and u(x ,  0.5)) 
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Figure 7(b). Steady state solution case (b): Re I 1, At = 001, 5 iterations, implicit (-) scheme. (i) Velocity field; (ii) 
streamfunction contours; (iii) pressure contours; (iv) velocity profiles (~(0.5, y) and v(x, 0.5)) 

velocity component maxima on the cavity centrelines are provided in Tables II(a) and II(b). These 
results are seen to compare favourably with the literature. 

The effects of altering the number of mass iterations can be clearly observed in Figure 8 where 
again scale discrepancies are used to reflect the overall requirements to achieve the steady state. 
Stability is enhanced for the one-iteration or mass-lumping option, but the price paid is in the 
relatively slow solution development over a fixed time lapse period. This enhancement in stability 
takes the form of a smoothing out of the high-frequency oscillations present in the relative error 
norm plots. A 90% development to the steady state is observed over 250 time steps. The same 
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Table Ha. Comparison of steady state solution against the literature: case (a), Re = 1 

Scheme h l(ivc Vortex centre U,,,(0.5, y )  Vmar(x, 0.5) Vmin(x, 0.5) 

Explicit 0.05 0-0825 (0.50, 080) 0.177 0.140 -0.138 
Explicit 0.10 0.0824 (050, 080) 0.175 0.168 -0.168 
Implicit 005 0.0835 (0.50, 0.80) 0.175 0 140 -0.138 
Implicit 0-10 0.0841 (0.50, 0.80) 0-183 0146 -0.146 

(0.50, 080) - - - Reference 31 0.06 0.084 

Table Ilb. Comparison of steady state solution against the literature: case (b), Re = 1 

Scheme h +VC Vortex centre Uma,(0.5, y )  Vma.(x, 0.5) Vmimin(x, 0.5) 

Explicit 
Implicit 
Reference 39 
Reference 37 
Reference 33* 
Reference 33* 
Reference 40* 
Reference 3 1 * 
Reference 35* 
Reference 4 1 * 
Reference 38 

0.050 
0.050 
0050 
0.0083 
0.050 
0-025 
0.010 
003 1 
0.05 
0.100 
0.015 

0.0953 
0.0990 
0.0995 
0.10006 
0.0992 
0-0998 
0.1 
0.095 

- 

1.00 

(0.50, 0.75) 
(0.50, 0.75) 
(0.50, 075) 

(0.5oo00, 0.76667) 
(0.50, 0.75) 
(0.50, 0.76) 
(050, 0-76) 
(050, 0.78) 
(0.5, 0.75) 

(0.50, 0.76) 
(0.50, 077) 

0.199 
0.199 

- 
0.210 
- 

- 

0.207 
0.200 
0.188 

0.158 
0177 

- 
0.138 

0.175 
- 

-0.158 
-0’177 

- 
-0-138 
- 

-0.175 

* R e = 0 .  

final steady state is always reached, but here the five-iteration option is the most cost-effective. 
This choice achieves a steady state in almost half the number of time steps of the three-iteration 
case, and within a fifth of that for the mass-lumping alternative. 

High-Re range. The results for Re = 400 are as depicted for the explicit algorithm with no 
appreciable differences being observed for the term exclusion at step 3. The complete omission of 
the third fractional step is reflected in Figure 9 where again oscillatory and decaying fluctuations 
in the pressure relative error norms are found. Note however that the amplitude and frequency of 
these fluctuations have increased here over those observed for the explicit algorithm at Re = 400. 

The effects of altering the number of mass iterations from five to one has the same response as 
before. The smoother development in solution history of the one-iteration case must be balanced 
against the reduction in magnitude of the solution attained over a fixed number of time steps. The 
one-iteration case over 250 time steps provides only a 60% development of the equivalent five- or 
three-iteration versions. It must be pointed out however that beyond the start-up phase there is 
little effect on the magnitude of the relative error norm plots here with changes in the mass 
iteration number, though larger fluctuations are observed at  the higher-iteration-number cases in 
the early phase as before. All the indications are that the three-iteration option is preferable in this 
instance. Furthermore, changes in At  proved to have only minor influence on scheme per- 
formance, though a value of At = 0.02 did render a 10% more rapid development of the solution 
history against the smaller value of At = 0.01. Hence the preference for the larger time step. 
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Figure 8(a). EBect of mass iteration number: Re = 1, At = 0.02, 1 iteration, implicit (-) scheme 
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Figure 8(b). Effect of mass iteration number: Re = 1, At = 002, 5 iterations, implicit (-) scheme 
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Figure 9(a). Effect of stage 3: present (Re = 400, At = 0.02, 3 iterations, implicit (-) scheme) 
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Figure 9(b). Effect of stage 3 removed (Re  = 400, At == 0.02, 3 iterations, implicit (-) scheme) 
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Figure lqb). Relative run-time cost to reach steady state against number of mass iterations 
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As noted earlier for low Re, there again appears to be little difference between the steady states 
reached when either the implicit or explicit scheme is employed. The permissible order of At is the 
same, as is the time lapse to the steady state for both approaches. This is in accordance with 
expectation since at high Re values the dominating numerical influence on the left-hand side of 
the equations is due to the mass matrix terms common to both implicit and explicit schemes. 

Run-time costs 

Figure 10 is included to provide comparative evidence of the run-time costs and relative 
efficiencies of the variety of schemes discussed throughout this paper for the various imple- 
mentation choices. Figure l0(a) shows the cost/time step (c1J and Figure 1qb) the relative total 
run-time cost to achieve the steady state (css) for each scheme variant. From Figure lqa )  it is 
apparent that for the mass-lumping option c, is identical for all schemes, but thereafter grows 
with the iteration number. Also c,, is always larger in the implicit case and the disparity from the 
explicit case grows with increasing iteration number. Figure 1qb) permits the identification of 
scheme optimality. Of particular significance is that the implicit scheme always outperforms the 
explicit scheme in both high- and low-Re ranges. At high Re the implicit scheme is 33% more 
efficient than the explicit form, whilst a t  low Re the corresponding figure is about 80% in favour 
of the implicit scheme. This is surely convincing evidence of the potential advantages offered by 
this new implicit scheme. 

CONCLUSIONS 

The viability has been demonstrated of a Taylor-Galerkin-based finite element technique for 
solving viscous incompressible flows over a wide range of inertial conditions. This technique will 
form the basis of a major future research programme, providing a powerful and flexible tool to 
analyse transient three-dimensional flows of Newtonian and non-Newtonian fluids. 

A semi-implicit scheme is now advocated that performs well for 1 I Re 1400 on standard 
benchmark problems. From the theoretical and the numerical standpoint this method is found to 
be stable, reliable and feasible for large-scale problems. Various sources of instability have been 
identified in the developmental process of the present scheme and appropriate corrective actions 
have been taken. These include the effects of modifications to the algorithm at the third fractipnal 
step. Furthermore, some conclusions are drawn concerning certain variations in the iterative 
solution of the Galerkin mass matrix equations. Some attention has also been given here to 
extracting parallelism from the proposed algorithms with a view to taking advantage of the 
variety of modern computer architectures available today. 
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